2 Minute Step Test

The 2 Minute Step Test is used to assess an individual’s aerobic capacity and evaluate their level of functional fitness.

Acronym 2MST, TMST

Area of Assessment

Aerobic Capacity

Assessment Type

Performance Measure

Administration Mode

Paper & Pencil

Cost

Actual Cost

Populations

Key Descriptions

Number of Items

Equipment Required

Time to Administer

Required Training

No Training

Age Ranges

Instrument Reviewers

Riley Caughlin, BS, MS, SPT

Bayler Andrews, BS, SPT

Mike Richardson, PT, DPT, DHSc, Board Certified Geriatric Clinical Specialist

Leslie Ayres, PT, DPT, Board Certified Cardiovascular and Pulmonary Clinical Specialist

Kenneth L Miller, PT, DPT, Board Certified Geriatric Clinical Specialist

Body Part

Lower Extremity

ICF Domain

Body Function
Body Structure
Activity

Measurement Domain

Activities of Daily Living
Motor

Considerations

The original study for the 2 Minute Step Test did not specify if the use of assistive devices (i.e. walkers or canes) were allowed; however, various subsequent studies have allowed for the use of assistive devices to maintain balance while conducting the test.

Older Adults and Geriatric Care

Standard Error of Measurement (SEM)

Older Adults: (Uher & Liba, 2017; N = 112; age range = 64-65 years; Slovakian sample)

Cut-Off Scores

Older Adults: (Rikli & Jones, 2013; N = 2,140; age range = 60-94 years)

Cut-off scores for predicting physical independence:

Age (Years)

Step count (Male participants)

Step count (Female participants)

Normative Data

Older Adults: (Rikli & Jones, 1999b; N = 7,183; age range = 60-94 years)

Normative data for males (n = 2,135):

Age Range (years)

Participants (n)

Step Count (SD)

Normative data for females (n = 5,048):

Age Range (years)

Participants (n)

Step Count (SD)

Percentiles for males:

Age (Years)

10 th

Percentile (steps)

25 th Percentile (steps)

50 th Percentile (steps)

75 th Percentile (steps)

90 th Percentile (steps)

Percentiles for females:

Age (Years)

10 th

Percentile

(steps)

25 th Percentile (steps)

50 th Percentile (steps)

75 th Percentile (steps)

90 th Percentile (steps)

Older Adults: (Rikli & Jones, 2013; N = 2,140; age range = 60-94 years)

Step counts for older adults defined as “moderate functioning” via the Composite Physical Function Scale:

Age (Years)

Participants (n)

Males: Step Count (SD)

Females: Step Count (SD)

Older Adults with Obesity: (Guede-Rojas et al., 2020; N = 75; mean age (SD) = 79.1 (5.6) years; Chilean sample)

Gender

Age (SD)

BMI (SD)

Steps (SD)

Older Adults in community or nursing home settings: (Kazoglu & Yuruk, 2020; N = 118; Turkish sample)

Setting

Participants (n)

Age (SD)

Steps (SD)

Older Adults: (Uher & Liba, 2017; N = 112; age range = 64-65 years; Slovakian sample)

Living Environment

Participants (n)

Steps (SD)

Older Adults: (Bhattacharya et al., 2017; N = 400; mean (SD) age for males = 69.80 (3.82) years; mean (SD) age for females = 67.25 (2.57) years; Indian sample)

Normative data for males (n = 284):

Age (years)

Participants (n)

Steps (SD)

Normative data for females (n = 116):

Age (years)

Participants (n)

Steps (SD)

Percentiles for males:

Age (Years)

10 th

Percentile (steps)

25 th Percentile (steps)

50 th Percentile (steps)

75 th

Percentile (steps)

90 th

Percentile (steps)

99 th Percentile (steps)

Percentiles for females:

Age (years)

10 th

Percentile (steps)

25 th

Percentile (steps)

50 th

Percentile (steps)

75 th

Percentile (steps)

90 th

Percentile (steps)

99 th

Percentile (steps)

Older Adults: (Kim et al., 2020; N = 1009; Nepalese sample)

Normative data for males (n = 449):

Age (years)

Participants (n)

Steps (SD)

Normative data for females (n = 560):

Age (years)

Participants (n)

Steps (SD)

Older adults: (Hsiao et al., 2017; N = 442; Taiwanese sample)

Test/Retest Reliability

Older Adults: (Rikli & Jones, 2013)

Older Adults: (Rikli & Jones, 1999a; N = 82; Mean (SD) age = 71.8 (6.9) years)

Interrater/Intrarater Reliability

Older Adults: (Rikli & Jones, 2013)

Criterion Validity (Predictive/Concurrent)

Predictive Validity:

Taiwanese Older adults: (Hsiao et al., 2017)

Older Obese Adults: (Guede-Rojas et al., 2020)

Concurrent Validity:

Older Adults: (Dugas, 1996; N = 24; mean (SD) age = 69.6 (6.5) years)

Older Adults: (Johnston, 1998; N = 25; mean (SD) age = 72.1 (6.2) years)

Older Obese Adults: (Guede-Rojas et al., 2020)

Older Adults: (de Oliviera Brito et al., 2014; N = 37; mean (SD) age = 70 (7) years)

Responsiveness

Older Adults: (Rikli & Jones, 1999b)

Pulmonary Diseases

Construct Validity

Convergent validity:

Mild to Moderate Chronic Obstructive Pulmonary Disease: (Priya et al., 2019; N = 30; age range 20-75 years)

Cardiovascular Disease

Cut-Off Scores

Hypertensive Older Adults: (Guedes et al., 2015; N = 101; mean (SD) age = 69.80 (7.55) years; 59% Normotensive (BP < 139/89), 41% Hypertensive (BP >140/90); Brazilian sample)

Normative Data

Hypertensive Older Adults: (Chhajed, 2014; N = 30; mean (SD) age = 71.13 (7.17) years; mean (SD) systolic blood pressure = 134.77 (9.72); mean (SD) diastolic blood pressure = 79.27 (9.13))

Heart Failure: (Wegrzynowska-Tedorczyk et al., 2016; N = 168; mean (SD) age: 59 (12) years; New York Heart Association Classification: Class I n = 28, Class II n = 85, Class III n = 49, Class IV n = 6; mean (SD) Left Ventricular Ejection Fraction = 32% (8%); Polish sample)

New York Heart Association Classification Scale

Steps (SD)

NYHA Class I-II (n = 113)

NYHA Class III-IV (n = 55)

NYHA Class I-IV (n = 168)

Heart Failure: (Alosco et al., 2012; N = 145; mean (SD) age = 68.97 (9.31) years; New York Heart Association Classification Class II-III at time of study)

Gender

Steps (SD)

Heart Failure: (Alosco et al., 2013; N = 69; mean (SD) age = 68.07 (8.02) years; mean (SD) Left Ventricular Ejection Fraction = 42.32% (14.11%))

Gender

Steps (SD)

Hypertensive Older Adults: (Guedes et al., 2015; N = 101; mean (SD) age = 69.80 (7.55) years; 59% Normotensive (BP < 139/89), 41% Hypertensive (BP >140/90); Brazilian sample)

Hypertensive Older Women: (Pedrosa & Holanda, 2009; N = 32; mean (SD) age = 65.4 (5.4) years; mean (SD) time since diagnosis = 17.7 (9.2) years)

Criterion Validity (Predictive/Concurrent)

Predictive validity:

Hypertensive Older Adults: (Guedes et al., 2015; N = 101; mean (SD) age = 69.80 (7.55) years; 59% Normotensive (BP < 139/89), 41% Hypertensive (BP >140/90); Brazilian sample)

Concurrent validity:

Heart Failure: (Alosco et al., 2012; N = 145; mean (SD) age = 68.97 (9.31) years; New York Heart Association Classification Class II-III at time of study)

Heart Failure: (Garcia et al., 2013; N = 41; mean (SD) age 68.34 (8.41) years; mean (SD) Left Ventricular Ejection Fraction = 39.00% (10.79%)

Construct Validity

Convergent validity:

Heart Failure: (Wegrzynowska-Tedorczyk et al., 2016; N = 168; mean (SD) age: 59 (12) years; New York Heart Association Classification: Class I n = 28, Class II n = 85, Class III n = 49, Class IV n = 6; Left Ventricular Ejection Fraction (SD) = 32% (8%); Polish sample)

Hypertensive Older Adults: (Chhajed, 2014; N = 30; mean (SD) age = 71.13 (7.17) years; mean (SD) systolic blood pressure = 134.77 (9.72); mean (SD) diastolic blood pressure = 79.27 (9.13))

Hypertensive Older Women: (Pedrosa & Holanda, 2009)

Healthy Adults

Standard Error of Measurement (SEM)

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Activity Level

Average (SD) age (years)

SEM (steps) for interrater reliability

SEM (steps) for intrarater reliability

Sedentary (age 18-24)

Active (age 18-24)

Sedentary (age 25-44)

Active (age 25-44)

Minimal Detectable Change (MDC)

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Activity Level

Average (SD) age (years)

MDC95 (steps)

Sedentary (age 18-24)

Active (age 18-24)

Sedentary (age 25-44)

Active (age 25-44)

Cut-Off Scores

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Normative Data

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Young Adults: (Freitas et al., 2020; N = 60; 33.33% eutrophic, 33.33% overweight, 33.33% obese type I; mean (SD) age of eutrophic population = 21.95 (1.82) years; mean (SD) age of overweight population = 25.05 (8.10) years; mean (SD) age of obese type I population = 26.50 (9.76) years; Brazilian sample)

Body Type

Average (SD) age (years)

BMI (SD)

Steps (SD)

Interrater/Intrarater Reliability

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Activity Level

Interrater Reliability (ICC)

Intrarater Reliability (ICC)

Sedentary (age 18-24)

Excellent (0.90)

Excellent (0.87)

Active (age 18-24)

Excellent (0.92)

Excellent (0.90)

Sedentary (age 25-44)

Excellent (0.92)

Excellent (0.83)

Active (age 25-44)

Excellent (0.96)

Excellent (0.91)

Criterion Validity (Predictive/Concurrent)

Predictive validity:

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Concurrent validity:

Healthy Adults: (Nogueira et al., 2021; N = 200; 25% sedentary between ages 18-24, 25% active between ages 18-24, 25% sedentary between ages 25-44, 25% active between ages 25-44; Brazilian sample)

Cancer

Criterion Validity (Predictive/Concurrent)

Concurrent validity:

Cancer Patients: (Quinn et al., 2020; N = 103; mean (SD) age = 64.7 (11.6) years)

Alzheimer's Disease and Progressive Dementia

Normative Data

Alzheimer’s Dementia: (Plácido et al., 2019; N = 93; age > 60 years; 39% healthy adults, 19% mild cognitive impairment, 27% mild Alzheimer’s Dementia, 15% moderate Alzheimer’s Dementia; Brazilian sample)

Population

Mean (SD) age (years)

Steps Count (SD)

Mild Cognitive Impairment

Mild Alzheimer’s Dementia

Moderate Alzheimer’s Dementia

Criterion Validity (Predictive/Concurrent)

Concurrent validity:

Alzheimer’s Dementia: (Plácido et al., 2019; N = 93; age > 60 years; 39% healthy adults, 19% mild cognitive impairment, 27% mild Alzheimer’s Dementia, 15% moderate Alzheimer’s Dementia; Brazilian sample)

Parkinson's Disease

Normative Data

Parkinson’s Disease: (Youm et al., 2020; N = 17; Korean sample)

Group Sample

Mean (SD) age (years)

Mean (SD) Hoehn & Yahr stage

Mean (SD) Unified Parkinson’s Disease Rating Scale score

Baseline 2MST Steps (SD)

Responsiveness

Parkinson’s Disease: (Youm et al., 2020; N = 17; Korean sample)

Renal Disease

Normative Data

Chronic Kidney Disease (Stage 4-5): (Chen et al., 2018; N = 156; Taiwanese sample)

Chronic Kidney Disease (Stage 3-4): (Aoike et al., 2014; N = 29; mean (SD) age = 55.1 (11.6) years; mean (SD) BMI for CKD exercise group = 31.7 (4.5); mean (SD) BMI for CKD control group = 30.7 (4.1); Brazilian sample)

Back Pain

Normative Data

Chronic Non-Specific Low Back Pain: (Vachalathiti et al., 2020; N = 60; 50% Chronic Non-Specific Low Back Pain (CNSLBP), 50% non-CNSLBP; Taiwanese sample)

Category

Number of participants

Mean (SD) age (years)

Mean (SD) 2MST score

Chronic Non-Specific Low Back Pain: (Sakulsriprasert et al., 2019; N = 20; 35% male, 65% female; mean (SD) age = 43.15 (2.03); Chinese sample)

Responsiveness

Chronic Non-Specific Low Back Pain: (Sakulsriprasert et al., 2019)

Stroke

Normative Data

Stroke: (Taylor-Piliae et al., 2012; N = 100; age (SD) = 70 (10) years; post stroke time (SD) = 39 (49) months)

Criterion Validity (Predictive/Concurrent)

Predictive validity:

Stroke: (Taylor-Piliae et al., 2012; N = 100; age (SD) = 70 (10) years; post stroke time (SD) = 39 (49) months)

Concurrent validity:

Stroke: (Taylor-Piliae et al., 2012; N = 100; age (SD) = 70 (10) years; post stroke time (SD) = 39 (49) months)

Mixed Populations

Cut-Off Scores

Frailty: (Furtado et al., 2019; n = 140; 22% non-frail, 38% pre-frail, 40% frail; mean age = 83.0 years; Portuguese sample)

Normative Data

Fallers and Non-Fallers: (Zhao & Chung, 2016; N = 78; 62% at risk of falling; mean (SD) age of participants at risk of falling = 69.70 (3.64) years; mean (SD) age of participants not at risk of falling = 70.10 (3.75) years; Chinese sample)

Fallers and Non-Fallers: (Toraman & Yıldırım, 2010; N = 60; mean (SD) age = 73.3 (6.6) years; Turkish sample)

Fallers and Non-Fallers: (Zak et al., 2017; N = 102, mean (SD) age = 70 (4.33) years; 49% between ages 65-69, 30% between ages 70-74, 21% between ages 75-79; female post-menopausal Breast Cancer survivors; Polish sample)

Sarcopenia: (Björkman et al., 2019; N = 262; 74% female; mean (SD) age of males = 83.4 (4.5) years; mean (SD) age of females = 82.4 (4.4) years; Finnish sample)

Frailty: (Furtado et al., 2019; n = 140; 22% non-frail, 38% pre-frail, 40% frail; mean age = 83.0 years; Portuguese sample)

Cognitively Impaired Older Adults: (Yang et al., 2018; N = 2096; 32% cognitively impaired, 68% non-cognitively impaired; mean (SD) age of participants with cognitive impairment = 74.40 (5.73) years; mean (SD) age of participants without cognitive impairment = 71.79 (4.63) years)

Criterion Validity (Predictive/Concurrent)

Predictive validity:

Frailty: (Furtado et al., 2019; N = 140; 22% non-frail, 38% pre-frail, 40% frail; mean age = 83.0 years; Portuguese sample)

Fallers and Non-Fallers: (Toraman & Yıldırım, 2010; N = 60; mean (SD) age = 73.3 (6.6) years; Turkish sample)

Sarcopenia: (Björkman et al., 2019; N = 262; 74% female; mean (SD) age of males = 83.4 (4.5) years; mean (SD) age of females = 82.4 (4.4) years; Finnish sample)

Concurrent validity:

Fallers and Non-Fallers: (Toraman & Yıldırım, 2010; N = 60; mean (SD) age = 73.3 (6.6) years; Turkish sample)

Fallers and Non-Fallers: (Zak et al., 2017; N = 102, mean (SD) age = 70 (4.33) years; 49% between ages 65-69, 30% between ages 70-74, 21% between ages 75-79; female post-menopausal Breast Cancer survivors; Polish sample)

Frailty: (Furtado et al., 2019; N = 140; 22% non-frail, 38% pre-frail, 40% frail; mean age = 83.0 years; Portuguese sample)

Construct Validity

Discriminant validity:

Cognitively Impaired Older Adults: (Yang et al., 2018; N = 2096; 32% cognitively impaired, 68% non-cognitively impaired; mean (SD) age of participants with cognitive impairment = 74.40 (5.73) years; mean (SD) age of participants without cognitive impairment = 71.79 (4.63) years)

Responsiveness

Fallers and Non-Fallers: (Zhao & Chung, 2016; N = 78; 62% at risk of falling; mean (SD) age of participants at risk of falling = 69.70 (3.64) years; mean (SD) age of participants not at risk of falling = 70.10 (3.75) years; Chinese sample)

Bibliography

Alosco, M. L., Brickman, A. M., Spitznagel, M. B., Griffith, E. Y., Narkhede, A., Raz, N., Cohen, R., Sweet, L. H., Colbert, L. H., Josephson, R., Hughes, J., Rosneck, J., & Gunstad, J. (2013). Poorer physical fitness is associated with reduced structural brain integrity in heart failure. Journal of the Neurological Sciences, 328(1-2), 51–57. https://doi.org/10.1016/j.jns.2013.02.015

Alosco, M. L., Spitznagel, M. B., Raz, N., Cohen, R., Sweet, L. H., Colbert, L. H., Josephson, R., Waechter, D., Hughes, J., Rosneck, J., & Gunstad, J. (2012). The 2-minute step test is independently associated with cognitive function in older adults with heart failure. Aging Clinical and Experimental Research, 24(5), 468–474. https://doi.org/10.3275/8186

Aoike, D. T., Baria, F., Kamimura, M. A., Ammirati, A., de Mello, M. T., & Cuppari, L. (2014). Impact of home-based aerobic exercise on the physical capacity of overweight patients with chronic kidney disease. International Urology and Nephrology, 47(2), 359–367. https://doi.org/10.1007/s11255-014-0894-8

Bhattacharya, P. K., Deka, K., Roy, A., & Saikia, H. (2017). Normative values of physical fitness test in the elderly: A community based study in an urban population in Northeast India. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/jcdr/2017/28079.10709

Björkman, M., Jyväkorpi, S. K., Strandberg, T. E., Pitkälä, K. H., & Tilvis, R. S. (2019). Sarcopenia indicators as predictors of functional decline and need for care among older people. The Journal of Nutrition, Health & Aging, 23(10), 916–922. https://doi.org/10.1007/s12603-019-1280-0

Chen, H.-M., Hsiao, S.-M., Kuo, M.-C., Lo, Y.-C., Huang, M.-F., Yeh, Y.-C., Yen, C.-F., & Chen, C.-S. (2018). Identifying early decline of daily function and its association with physical function in chronic kidney disease: Performance-based and self-reported measures. PeerJ, 6. https://doi.org/10.7717/peerj.5286

Chhajed, B. S. (2014). Correlation between 6MWT, 2MST and TUG among hypertensive older individuals. Indian Journal of Physiotherapy and Occupational Therapy - An International Journal, 8(1), 139. https://doi.org/10.5958/j.0973-5674.8.1.027

de Oliveira Brito, L. V., Maranhao Neto, G. A., Moraes, H., Emerick, R. F., & Deslandes, A. C. (2014). Relationship between level of independence in activities of daily living and estimated cardiovascular capacity in elderly women. Archives of Gerontology and Geriatrics, 59(2), 367–371. https://doi.org/10.1016/j.archger.2014.05.010

Dugas, E. W. (1996). The development and validation of a 2-minute step test to estimate aerobic endurance in older adults. Unpublished master’s thesis, California State University, Fullerton, Fullerton, CA.

Freitas, D. W. N., Frazão, M. B., Pereira, J. S., Almeida, M. Q. G., Rêgo, A. S., Pires, F. O., Dias, R., da Silva, I. M. A. F., Dibai-Filho, A. V., & Bassi-Dibai, D. (2020). Relationship between 2-Minute Step Test, anthropometric measures and habitual physical activity in sedentary individuals. Revista Andaluza de Medicina Del Deporte, 13(1), 21–24.

Furtado, G. E., Patrício, M., Loureiro, M., Hogervorst, E., Theou, O., Ferreira, J. P., & Teixeira, A. M. (2019). Physical frailty and health outcomes of fitness, hormones, psychological and disability in institutionalized older women: An exploratory association study. Women & Health, 60(2), 140–155. https://doi.org/10.1080/03630242.2019.1621978

Garcia, S., Alosco, M. L., Spitznagel, M. B., Cohen, R., Raz, N., Sweet, L., Josephson, R., Hughes, J., Rosneck, J., Oberle, M. L., & Gunstad, J. (2013). Cardiovascular fitness associated with cognitive performance in heart failure patients enrolled in cardiac rehabilitation. BMC Cardiovascular Disorders, 13, 29. https://doi.org/10.1186/1471-2261-13-29

Guede-Rojas, F., Jerez-Mayorga, D., Ulloa-Díaz, D., Soto-Martínez, A., Ramírez-Campillo, R., Barboza-González, P., & Angarita-Dávila, L. (2020). Relationship between anthropometric nutritional status and functional capacity in older adults living in the community. Revista Medica de Chile, 148(1), 69–77.

Guedes, M. B., Lopes, J. M., Andrade, A. de, Guedes, T. S., Ribeiro, J. M., & Cortez, L. C. (2015). Validation of the Two Minute Step Test for diagnosis of the functional capacity of hypertensive elderly persons. Revista Brasileira De Geriatria e Gerontologia, 18(4), 921–926. https://doi.org/10.1590/1809-9823.2015.14163

Hsiao, M.-Y., Li, C.-M., Lu, I.-S., Lin, Y.-H., Wang, T.-G., & Han, D.-S. (2017). An investigation of the use of the Kinect system as a measure of dynamic balance and forward reach in the elderly. Clinical Rehabilitation, 32(4), 473–482. https://doi.org/10.1177/0269215517730117

Johnston, J. (1998). Validation of a 2-minute step-in-place test relative to treadmill performance in older adults. Unpublished master’s thesis, California State University, Fullerton, Fullerton, CA.

Kazoglu, M., & Yuruk, Z. O. (2020). Comparison of the physical fitness levels in nursing home residents and community-dwelling older adults. Archives of Gerontology and Geriatrics, 89, 104106. https://doi.org/10.1016/j.archger.2020.104106

Kim, J. K., Son, W. I., Sim, Y. J., Lee, J. S., & Oli Saud, K. (2020). The study of health-related fitness normative scores for Nepalese older adults. International Journal of Environmental Research and Public Health, 17(8), 2723. https://doi.org/10.3390/ijerph17082723

Nogueira, M. A., Almeida, T., Andrade, G. S., Ribeiro, A. S., Rêgo, A. S., Dias, R., Ferreira, P. R., Penha, L., Pires, F. O., Dibai-Filho, A. V., & Bassi-Dibai, D. (2021). Reliability and accuracy of 2-Minute Step Test in active and sedentary lean adults. Journal of Manipulative and Physiological Therapeutics, 44(2), 120–127. https://doi.org/10.1016/j.jmpt.2020.07.013

Pedrosa, R., & Holanda, G. (2009). Correlação entre os testes da caminhada, marcha estacionária e TUG em hipertensas idosas. Brazilian Journal of Physical Therapy, 13(3), 252–256. https://doi.org/10.1590/s1413-35552009005000030

Plácido, J., Ferreira, J. V., de Oliveira, F., Sant'Anna, P., Monteiro-Junior, R. S., Laks, J., & Deslandes, A. C. (2019). Association among 2-min Step Test, functional level and diagnosis of dementia. Dementia & Neuropsychologia, 13(1), 97–103. https://doi.org/10.1590/1980-57642018dn13-010011

Priya, P. S., Nazar, A. K., Azarudheen, S., Saranya, N., Thenmozhi, A., & Vaishnavi, V. (2019). Comparison of the Two Minute Step Test with Six Minute Walk Test in chronic obstructive pulmonary disease patients. Indian Journal of Physiotherapy and Occupational Therapy - An International Journal, 13(2), 215. https://doi.org/10.5958/0973-5674.2019.00076.5

Quinn, S. E., Crandell, C. E., Blake, M. E., Bontrager, A. M., Dempsey, A. G., Lewis, D. J., Hamm, J. T., Flynn, J. M., Smith, G. S., & Wingard, C. J. (2020). The correlative strength of objective physical assessment against the ECOG performance status assessment in individuals diagnosed with cancer. Physical Therapy, 100(3), 416–428. https://doi.org/10.1093/ptj/pzz192

Rikli, R. E., & Jones, C. J. (1999a). Development and validation of a functional fitness test for community-residing older adults. Journal of Aging & Physical Activity, 7(2), 129.

Rikli, R.E., Jones, C. J. (1999b). Functional fitness normative scores for community-residing older adults, ages 60-94. Journal of Aging & Physical Activity. 7(2), 162-181.

Rikli, R. E., & Jones, C. J. (2002). Measuring functional fitness of older adults. The Journal on Active Aging. 24-30.

Rikli, R. E., & Jones, C. J. (2013). Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. The Gerontologist, 53(2), 255–267. https://doi.org/10.1093/geront/gns071

Sakulsriprasert, P., Vachalathiti, R., & Kingcha, P. (2019). Responsiveness of pain, functional capacity tests, and disability level in individuals with chronic nonspecific low back pain. Hong Kong Physiotherapy Journal, 40(01), 11–17. https://doi.org/10.1142/s101370252050002x

Taylor-Piliae, R. E., Latt, L. D., Hepworth, J. T., & Coull, B. M. (2012). Predictors of gait velocity among community-dwelling stroke survivors. Gait & Posture, 35(3), 395–399. https://doi.org/10.1016/j.gaitpost.2011.10.358

Toraman, A., & Yıldırım, N. Ü. (2010). The falling risk and physical fitness in older people. Archives of Gerontology and Geriatrics, 51(2), 222–226. https://doi.org/10.1016/j.archger.2009.10.012

Uher, I., & Liba, J. (2017). Correlation between functional fitness of older people and environmental and accommodation conditions. Journal of Physical Education & Sport, 17(4), 2365–2371.

Vachalathiti, R., Sakrulsriprasert, P., & Kingcha, P. (2020). Decreased functional capacity in individuals with chronic non-specific low back pain: A cross-sectional comparative study. Journal of Pain Research, Volume 13, 1979–1986. https://doi.org/10.2147/jpr.s260875

Yang, M., Guo, Y., Gong, J., Deng, M., Yang, N., & Yan, Y. (2018). Relationships between functional fitness and cognitive impairment in Chinese community-dwelling older adults: A cross-sectional study. BMJ Open, 8(5). https://doi.org/10.1136/bmjopen-2017-020695

Youm, C., Kim, Y., Noh, B., Lee, M., Kim, J., & Cheon, S. M. (2020). Impact of trunk resistance and stretching exercise on fall-related factors in patients with Parkinson's disease: A randomized controlled pilot study. Sensors (Basel, Switzerland), 20(15), 4106. https://doi.org/10.3390/s20154106

Zak, M., Biskup, M., Macek, P., Krol, H., Krupnik, S., & Opuchlik, A. (2017). Identifying predictive motor factors for falls in post-menopausal breast cancer survivors. PLoS One, 12(3). https://doi.org/10.1371/journal.pone.0173970

Zhao, Y., & Chung, P.-K. (2016). Differences in functional fitness among older adults with and without risk of falling. Asian Nursing Research, 10(1), 51–55. https://doi.org/10.1016/j.anr.2015.10.007

rehabilitation measures

More Instruments Like This

We have reviewed more than 500 instruments for use with a number of diagnoses including stroke, spinal cord injury and traumatic brain injury among several others.